2020年12月8日星期二

学习JUC源码(2)——自定义同步组件

前言

  在之前的博文(学习JUC源码(1)——AQS同步队列(源码分析结合图文理解))中,已经介绍了AQS同步队列的相关原理与概念,这里为了再加深理解ReentranLock等源码,模仿构造同步组件的基本模式,编写不可重复的互斥锁Mutex与指定共享线程数量的共享锁。MySharedLock。

  主要参考资料《Java并发编程艺术》(有需要的小伙伴可以找我,我这里只有电子PDF)同时结合ReentranLock、AQS等源码。

 


 

一、构造同步组件的模式

丛概念方层面,在中,我们知道锁与同步器的相关概念:

  • 同步器是实现锁的关键,在锁的实现中聚合同步器,利用同步器实现锁的语义;
  • 锁是面向使用者的,提供锁交互的实现;
  • 同步器是面向锁的实现者,简化了锁的实现方式,屏蔽了同步状态管理、线程排队、等待/唤醒等底层操作。

从代码层面,同步器是基于模板模式实现的,可以通过可重写的方法中的随便一个窥探:

  /**  * 模板方法:  * protected关键字  * 没有任何实现  * @param arg  * @return  */ protected boolean tryAcquire(int arg) {  throw new UnsupportedOperationException(); }

也就是需要进行以下几步:

1)继承同步器重写指定方法(idea中extends AQS点击快捷键ctrl+O即可显示)

  • tryAcquire(int arg):独占式获取同步状态;
  • tryRelease(int arg):独占式释放同步状态;
  • tryAcquireShared(int arg):共享式获取同步状态,返回大于0的值表示获取成功,否则失败
  • tryReleaseShared(int arg):共享式释放锁
  • isHeldExclusively():当前线程是否在独占模式下被线程占用,一般该方法表示是否被当前线程占用

2)随后将同步器组合在自定义同步组件的实现中,即定义内部类Syn继承AQS,在Syn中重写AQS方法:

public class Sync extends AbstractQueuedSynchronizer{  @Override  protected boolean tryAcquire(int arg) {   final Thread current = Thread.currentThread();   if (compareAndSetState(0, 1)) {    // 获取成功之后,当前线程是该锁的持有者,不需要再可重入数    setExclusiveOwnerThread(current);    return true;   }   return false;  }  @Override  protected boolean tryRelease(int arg) {   if (getState() == 0) {    throw new IllegalMonitorStateException();   }   setExclusiveOwnerThread(null);   setState(0);   return true;  }  @Override  protected boolean isHeldExclusively() {    return getState() == 1;  }  // 返回Condition,每个Condition都包含了一个队列  Condition newCondition() {   return new ConditionObject();  } }

3)最后调用同步器提供的模板方法,即同步组件类实现Lock方法之后,在lock/unlock方法中调用内部类Syn的方法acquire(int arg)等方法

public class Mutex implements Lock {  ........ @Override public void lock() {  sync.acquire(1); } @Override public void unlock() {  sync.release(1); } ........}

具体请看下面的实践部分

二、互斥不可重入锁

 在我之前写过的博文中(详解Java锁的升级与对比(1)——锁的分类与细节(结合部分源码))介绍可重入锁与不可重入锁的区别时,就写到JUC中没有不可重入锁的具体实现,但是可以类比,现在呢,我们可以做到实现了,具体看下面代码,模式完全符合依赖Lock与AQS构造同步组件模式。

(1)Mutex代码实现(核心关键实现已经在代码中注释)

public class Mutex implements Lock { private final Sync sync = new Sync(); public class Sync extends AbstractQueuedSynchronizer{  @Override  protected boolean tryAcquire(int arg) {   final Thread current = Thread.currentThread();   if (compareAndSetState(0, 1)) {    // 获取成功之后,当前线程是该锁的持有者,不需要再可重入数    setExclusiveOwnerThread(current);    return true;   }   return false;  }  @Override  protected boolean tryRelease(int arg) {   if (getState() == 0) {    throw new IllegalMonitorStateException();   }   setExclusiveOwnerThread(null);   setState(0);   return true;  }  @Override  protected boolean isHeldExclusively() {    return getState() == 1;  }  // 返回Condition,每个Condition都包含了一个队列  Condition newCondition() {   return new ConditionObject();  } } @Override public void lock() {  sync.acquire(1); } @Override public void unlock() {  sync.release(1); } @Override public void lockInterruptibly() throws InterruptedException { } @Override public boolean tryLock() {  return false; } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {  return false; } @Override public Condition newCondition() {  return null; }}

其中核心代码就是重写的两个方法:

  • tryAcquire(int arg)方法:主要是设置同独占式更新同步状态,CAS实现state+1
  • tryRelease(int arg)方法:独占式释放同步状态,释放锁持有 

(2)测试Demo

public class MutexDemo { @Test public void test(){  final Mutex lock = new Mutex();  class Worker extends Thread {   @Override   public void run() {    // 一直不停在获取锁    while (true) {     lock.lock();     try {      System.out.println(Thread.currentThread().getName() +" hold lock, "+new Date());      Thread.sleep(1000);     } catch (InterruptedException e) {      e.printStackTrace();     } finally {      lock.unlock();      System.out.println(Thread.currentThread().getName() +" release lock, "+new Date());     }    }   }  }  for (int i = 0; i < 10; i++) {   Worker worker = new Worker();   // 以守护进程运行,VM退出不影响运行,这里只是为了一个打印效果,去掉注释一直打印   worker.setDaemon(true);   worker.start();  }  // 每隔一秒换行  for (int j = 0; j < 10; j++) {   try {    Thread.sleep(1000);   } catch (InterruptedException e) {    e.printStackTrace();   }   System.out.println();  } }}

(3)运行结果

Thread-0 hold lock, Tue Dec 08 16:26:42 CST 2020Thread-0 release lock, Tue Dec 08 16:26:43 CST 2020Thread-1 hold lock, Tue Dec 08 16:26:43 CST 2020Thread-2 hold lock, Tue Dec 08 16:26:44 CST 2020Thread-1 release lock, Tue Dec 08 16:26:44 CST 2020Thread-3 hold lock, Tue Dec 08 16:26:45 CST 2020Thread-2 release lock, Tue Dec 08 16:26:45 CST 2020Thread-3 release lock, Tue Dec 08 16:26:46 CST 2020Thread-4 hold lock, Tue Dec 08 16:26:46 CST 2020Thread-4 release lock, Tue Dec 08 16:26:47 CST 2020Thread-6 hold lock, Tue Dec 08 16:26:47 CST 2020Thread-7 hold lock, Tue Dec 08 16:26:48 CST 2020Thread-6 release lock, Tue Dec 08 16:26:48 CST 2020Thread-7 release lock, Tue Dec 08 16:26:49 CST 2020Thread-5 hold lock, Tue Dec 08 16:26:49 CST 2020Thread-8 hold lock, Tue Dec 08 16:26:50 CST 2020Thread-5 release lock, Tue Dec 08 16:26:50 CST 2020Thread-8 release lock, Tue Dec 08 16:26:51 CST 2020Thread-9 hold lock, Tue Dec 08 16:26:51 CST 2020

(4)结果分析

互斥锁的核心就是同一个同步状态只能被一个线程持有,其它线程等待持有线程释放才能竞争获取。截图一开始的运行结果分析:

Thread-0 hold lock, Tue Dec 08 16:26:42 CST 2020Thread-0 release lock, Tue Dec 08 16:26:43 CST 2020Thread-1 hold lock, Tue Dec 08 16:26:43 CST 2020Thread-2 hold lock, Tue Dec 08 16:26:44 CST 2020Thread-1 release lock, Tue Dec 08 16:26:44 CST 2020

10个线程不断竞争锁,一开始Thread-0在08 16:26:42获取到锁,持有锁1秒后在释放16:26:43时释放,同时Thread-1立马获取到锁,1秒后于16:26:44释放锁,同时Thread-2立马获取到了锁......

根据输出结果来说,完全符合Mutex作为互斥锁这个功能:同一时刻只有一个线程持有锁(同步状态),其它线程等待释放后才能获取

三、指定共享线程数目的共享锁

(1)代码实现(核心关键实现已经在代码中注释)

public class MyShareLock implements Lock { // 可以看到共享等待队列中的线程 public Collection<Thread> getSharedQueuedThreads(){  return syn.getSharedQueuedThreads(); } private final Syn syn = new Syn(2); private static final class Syn extends AbstractQueuedSynchronizer{  int newShareCount=0;  Syn(int shareCount){   if (shareCount <= 0) {    throw new IllegalArgumentException("share count must large than zero");   }   // 设置初始共享同步状态   setState(shareCount);  }  /**   * 共享锁指定数目   * @param reduceShareCount   * @return   */  @Override  protected int tryAcquireShared(int reduceShareCount) {   for (;;){    int currentShareCount = getState();    newShareCount = currentShareCount- reduceShareCount;    if (newShareCount < 0 ||      compareAndSetState(currentShareCount,newShareCount)) {     // newShareCount大于等于0才说明获取锁成功     if (newShareCount >= 0) {//      System.out.println(Thread.currentThread().getName()+" hold lock, current share count is "+newShareCount+", "+new Date());     }     // newShareCount小于0表示获取失败所以需要返回     // compareAndSetState(currentShareCount,newShareCount)为true自然表示成功需要返回     return newShareCount;    }   }  }  @Override  protected boolean tryReleaseShared(int returnShareCount) {   for (;;){    int currentShareCount = getState();    newShareCount = currentShareCount + returnShareCount;    if (compareAndSetState(currentShareCount,newShareCount)) {//     System.out.println(Thread.currentThread().getName() +" release lock, current share count is "+newShareCount+", "+new Date());     return true;    }   }  }  protected int getShareCount(){   return getState();  } } /**  * 调用内部同步器Syn的acquireShare方法  */ @Override public void lock() {  syn.acquireShared(1); } /**  * 调用内部同步器Syn的releaseShared方法  */ @Override public void unlock() {  syn.releaseShared(1); } @Override public void lockInterruptibly() throws InterruptedException {  if (Thread.interrupted()) {   throw new IllegalStateException();  }  syn.acquireInterruptibly(1); } @Override public boolean tryLock() {  return false; } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {  return false; } @Override public Condition newCondition() {  return null; }}

(2)测试Demo

public class ShareLockTest { @Test public void test(){  final MyShareLock lock = new MyShareLock();  class Worker extends Thread {   @Override   public void run() {    // 一直不停在获取锁   while (true) {    lock.lock();    try {     System.out.println(Thread.currentThread().getName() +" hold lock, "+new Date());//     System.out.println(lock.getSharedQueuedThreads());     Thread.sleep(1000);    } catch (InterruptedException e) {     e.printStackTrace();    } finally {     lock.unlock();     System.out.println(Thread.currentThread().getName() +" release lock, "+new Date());    }   }   }  }  for (int i = 0; i < 10; i++) {   Worker worker = new Worker();   // 以守护进程运行,VM退出不影响运行,这里只是为了一个打印效果,去掉注释一直打印   worker.setDaemon(true);   worker.start();  }  // 每隔一秒换行  for (int j = 0; j < 10; j++) {   try {    Thread.sleep(1000);   } catch (InterruptedException e) {    e.printStackTrace();   }   System.out.println();  } }}

(3)运行结果(结果可能不同)

Thread-1 hold lock, Tue Dec 08 16:36:05 CST 2020Thread-0 hold lock, Tue Dec 08 16:36:05 CST 2020Thread-0 release lock, Tue Dec 08 16:36:06 CST 2020Thread-4 hold lock, Tue Dec 08 16:36:06 CST 2020Thread-1 release lock, Tue Dec 08 16:36:06 CST 2020Thread-2 hold lock, Tue Dec 08 16:36:06 CST 2020Thread-4 release lock, Tue Dec 08 16:36:07 CST 2020Thread-2 release lock, Tue Dec 08 16:36:07 CST 2020Thread-5 hold lock, Tue Dec 08 16:36:07 CST 2020Thread-8 hold lock, Tue Dec 08 16:36:07 CST 2020Thread-8 release lock, Tue Dec 08 16:36:08 CST 2020Thread-3 hold lock, Tue Dec 08 16:36:08 CST 2020Thread-9 hold lock, Tue Dec 08 16:36:08 CST 2020Thread-5 release lock, Tue Dec 08 16:36:08 CST 2020Thread-6 hold lock, Tue Dec 08 16:36:09 CST 2020Thread-7 hold lock, Tue Dec 08 16:36:09 CST 2020Thread-3 release lock, Tue Dec 08 16:36:09 CST 2020Thread-9 release lock, Tue Dec 08 16:36:09 CST 2020Thread-6 release lock, Tue Dec 08 16:36:10 CST 2020Thread-1 hold lock, Tue Dec 08 16:36:10 CST 2020Thread-0 hold lock, Tue Dec 08 16:36:10 CST 2020Thread-7 release lock, Tue Dec 08 16:36:10 CST 2020Thread-1 release lock, Tue Dec 08 16:36:11 CST 2020Thread-2 hold lock, Tue Dec 08 16:36:11 CST 2020Thread-0 release lock, Tue Dec 08 16:36:11 CST 2020Thread-4 hold lock, Tue Dec 08 16:36:11 CST 2020Thread-2 release lock, Tue Dec 08 16:36:12 CST 2020Thread-8 hold lock, Tue Dec 08 16:36:12 CST 2020Thread-5 hold lock, Tue Dec 08 16:36:12 CST 2020Thread-4 release lock, Tue Dec 08 16:36:12 CST 2020Thread-5 release lock, Tue Dec 08 16:36:13 CST 2020Thread-9 hold lock, Tue Dec 08 16:36:13 CST 2020Thread-3 hold lock, Tue Dec 08 16:36:13 CST 2020Thread-8 release lock, Tue Dec 08 16:36:13 CST 2020Thread-3 release lock, Tue Dec 08 16:36:14 CST 2020Thread-7 hold lock, Tue Dec 08 16:36:14 CST 2020Thread-9 release lock, Tue Dec 08 16:36:14 CST 2020Thread-6 hold lock, Tue Dec 08 16:36:14 CST 2020

(4)结果分析

该指定共享线程数量N的共享锁的最终目的就是多个线程可以持有锁(同步状态),达到共享线程数量N(代码中默认为2)时,其它线程将进入Queue等待获取同步结果,同一时刻只能最多有N个线程持有锁

同样地,我们分析开头运行结果:

Thread-1 hold lock, Tue Dec 08 16:36:05 CST 2020Thread-0 hold lock, Tue Dec 08 16:36:05 CST 2020Thread-0 release lock, Tue Dec 08 16:36:06 CST 2020Thread-4 hold lock, Tue Dec 08 16:36:06 CST 2020Thread-1 release lock, Tue Dec 08 16:36:06 CST 2020Thread-2 hold lock, Tue Dec 08 16:36:06 CST 2020

10个线程不停竞争锁,一开始Thread-0与Thread-1在16:36:05时刻同时获取到了锁,此时已经达到共享数量的最大值,即N,之后持有锁1秒,Thread-0与Thread-1在16:36:06时刻立马释放锁,同时Thread-4与Thread-2立马退出等待队列立马竞争持有锁。

从结果来看,完全是符合ShareLock共享锁功能的:同一时刻最多允许N个线程持有锁,其它线程等待持有线程释放锁

 









原文转载:http://www.shaoqun.com/a/497262.html

万国邮政联盟:https://www.ikjzd.com/w/861

粉丝通:https://www.ikjzd.com/w/743

naver:https://www.ikjzd.com/w/1727


前言  在之前的博文(学习JUC源码(1)——AQS同步队列(源码分析结合图文理解))中,已经介绍了AQS同步队列的相关原理与概念,这里为了再加深理解ReentranLock等源码,模仿构造同步组件的基本模式,编写不可重复的互斥锁Mutex与指定共享线程数量的共享锁。MySharedLock。  主要参考资料《Java并发编程艺术》(有需要的小伙伴可以找我,我这里只有电子PDF)同时结合Reent
斑马物联网:斑马物联网
parenthood:parenthood
香港旅游资讯:淘尽世界好书!全球最大海上图书馆「望道号」再:香港旅游资讯:淘尽世界好书!全球最大海上图书馆「望道号」再
乾隆裕陵九龙宝剑的故事 :乾隆裕陵九龙宝剑的故事
港澳住宿必须注意的事项有哪些?:港澳住宿必须注意的事项有哪些?

没有评论:

发表评论